Audit Tralil

An audit trail (also called audit log) is a security-relevant chronological record, set of records, and/or destination and source of records that provide
documentary evidence of the sequence of activities that have affected at any time a specific operation, procedure, or event.

Settings
To use the Audit Trail function, you must enable it. Go to Edit > Alarms > Groups, and click on the Settings button.

" Goups)

TogEvers 3 Colors | NotifcationMethod |

Activef o= #FFFFO000ACVE .. | g messanes that don't require acknowledge

A popup display will open with many checkboxes. Besides the Enable option, you can choose which actions will be stored in the Audit Trail database. The
options are as follows:

User Logon/Logoff : Stores informational data on user login/logout.

Active Time ¥ | UserName Message =
L 2/4/2020 2:13:07 PM User Logged user: User; 127.0.0.1\RichClient

2/4/2020 2:13:01 PM Guest Logged user: Guest; 127.0.0.1\RichClient
B 2/4/2020 2:12:57 PM Administrator Logged user: Administrator; 127.0.0.1\RichClient
: 2/4/2020 2:12:38 PM Guest Logged user: Guest; 127.0.0.1\RichClient

Open/Close Displays: Stores informational data when displays are open or closed.

Active Time ¥ | Group Message =
L 2/4/2020 2:19:27 PM AuditTrail Display was closed: About; RichClient
_ 2/4/2020 2:19:25 PM AuditTrail Display was closed: SelectPage; RichClient
__2/4/2020 2:119:25 PM AuditTrail Display was opened: About; RichClient
3 2/4/2020 2219:25 PM AuditTrail Display was closed: MainPage; RichClient
_ 2/4/2020 2:19:23 PM AuditTrail Display was opened: SelectPage; RichClient
) 2/4/2020 2:16:49 PM AuditTrail Display was opened: Header; RichClient
2/4/2020 2:16:49 PM AuditTrail Display was opened: MainPzage; RichClient

Remote Connections: Stores information on remote client connections (Smart/Rich Clients).

Active Time | Message
__ 2/4/2020 3:26:26 PM Connection accepted: 192.168.0.16\RichClient; Guest
A 2/4£2020 3:25:48 PM Connection closed: 192.168.0.16\SmartClient
2/4£2020 3:25:36 PM Ceonnection accepted: 192.168.0.16\SmartClient; Guest

Custom Messages: Stores added custom messages.

public void MouselLeftButtonDownl (object sender, System.Windows.Input.InputEventArgs e)
1
@Alarm.AuditTrail .AddCustomMessage ("Custom Message added in " + @Server Now + " by User: " + @Client.UserNa.me);I
1

Active Time ¥ | Message | [=

__ 2/4/2020 2:24:38 PM | Custom Message added in 2/4/2020 2:24:38 PM -03:00 by User: Administrator
2/4/2020 2:23:48 PM Custom Message added in 2/4/2020 2:23:48 PM -03:00 by User: Guest

Tag Changes: Stores informational data of every tag change.

Active Time ~ | TagName | Message =
: 2/4/2020 313119 PM Tag.Pressure Tag changed

2/4/2020 3:13:17 PM Tag.OnOff Tag changed
_ 2/4/2020 3:13:14 PM Tag.OpenClose Tag changed

_ 2/4/2020 3:13112 PM Tag.Selectedindex Tag changed
__ 2/4/2020 313110 PM Tag.Temperature Tag changed
2/4/2020 3:13:08 PM Tag.Temperature Tag changed

Datasets (Insert/Updates or All Commands): Stores information on datasets.

Active Time * | Message -

: 2/4/2020 3:06:23 PM Dataset executed Execute command: Dataset.Query.AlarmSelect; Select * from Alarms; Success; RichClient
2/4/2020 3:08:13 PM Dataset executed Execute command: Dataset.Query.HistonianSelect; Select * from Table1; Success; RichClient

Operator Actions: Stores information on operator actions.

Active Time v | Message ||i|

__ 2/4/2020 2:59:52 PM Report executed Save command: Report.TemperatureReport; RichClient; C:\TemperatureReport.pdf
2/4/2020 2:59:30 PM Report executed Save command: Report.FurnacelnfoReport; RichClient; C\FurnacelnfoReport.pdf

Save Reports: Stores information when the save command is executed.

Active Time ~ | Message |3

_ 2/4/2020 2:5%:52 PM Report executed Save command: Report.TemperatureReport: RichClient: C:\TemperatureReport.pdf
2/4/2020 2:59:30 PM Report executed Save command: Report.FurnacelnfoReport; RichClient; C:\FurnacelnfoReport.pdf

System Warnings: Stores information related to the system.

Active Time ~ | Group Message _‘
: 2/4/2020 2:39:19 PM AuditTrail DataSet was started
_ 2/472020 2:38:15 PM AuditTrail Server was started
_ 2/4/2020 2:39:15 PM AuditTrail Historian was started
) 2/4/2020 2:39:15 PM AuditTrail Alarm was started

It is possible to enable any of these options during runtime by using the Alarm namespace properties. The syntax is:

@\ armAuditTrail.<Audit Trail Option>

To visualize the stored Audit Trail data, you can add an AlarmWindow element to your display and select the AuditTrail option in the ComboBox list.

AlarmWindow configuration

ControlName: MaxLines: 1024
List: AlarmHistory+AuditTrail c
History Interval: OnlineAlarms To

AlarmHistory
¥4 Show column titl AuditTrail Ack by page: s
AlarmHistory+AuditTell ———
B Show Header \ |

W% AllowSort ¥ Allow Column Reorder B8 Display Value column as string

Filter: B Display Milliseconds

¥ Ack Selected line

Columns:

ActiveTime_Ticks

TagName

Group ¥ Visible ¥~ Allow Filter
Value ¥% Show in column chooser
ID

ltemName

State

AckRequired

Condition

Area

Custom Messages

One of the most important features of the Audit trail is the ability to have customizable messages added to a historian database. Custom messages are
added in runtime using the method below:

@\ arm Audi t Trai | . AddCust omVessage(string nessage, string areaName, string objectNane, string value, string
itemName, string auxVal ue, string conment)

where:
® message: The custom message to be added to the Audit
® areaName: The area related to this custom message
® objectName: The object related to this custom message
® value: The object value related to this custom message
® itemName: The item name
® auxValue: The auxiliary value
® comments: The comments

The messages can either be text or a concatenation between text and real time info from the project. For messages that are only text, you will need only
the message parameter, e.g.:

@\ arm Audi t Trai | . AddCust omvessage(" The day is sunny")

An example on the usage of text and project info is:

@\ arm Audi t Trai | . AddCust omvessage("User: " + @ient.UserNane + " |ogged");

Add Translation to Custom Messages

To translate text into different languages, you first need to create a set of words in a custom dictionary. Go to Run > Dictionaries > Localization. On the
top of the display, you will find some buttons:

Global Localization Settings
¥4 Alarm messages ¥, Displays strings

I tosaonee

Dictionary: Dictiona

New: Create a new dictionary

Del: Delete an existing dictionary

Rename: Renames an existing dictionary

Load strings: Load project strings that have the Global Localization setting

{ localization \ Enumera

Dictionary: E Global Localization Settings

¥, Alarm messages ¥, Displays strings

(EESEIES

Limite

To apply this feature to the custom messages in the Audit Trail, you must follow a certain syntax.

® If the message is text only, the default syntax is:

@\ arm Audi t Trai | . AddCust omvessage("tag changed val ue, AckRequired");

® |f the message is text and project info, you must add the curly brackets char "{ }" before and after the project info. The message string should look
like this:

string nessage = "User: {" + @lient.UserName + "} | ogged"

@ Note

The alarm database will contain chars " { "and " } " in the Message column. The dictionary must also contain the brackets characters.

You must add another string element to the itemName input parameter, as seen below:

string itemName = "{object}"

A final AddCustomMessage with localization capabilities should look like this:

@\ arm Audi t Trai | . AddCust omVessage("User: {" + @ient.UserNamre + "} logged", null, null, null,
"{object}", null, null);

Translating Tags and Tables
For reports with different translation options, the first requirement is the creation of Dictionaries (in Run > Dictionaries > Localization).

MmO | -

Dictionary: pt_BR

- L
& Dictionaries

To switch between languages, use the property:

@ ient.Localization ="" // for default dictionary
/1 or
@ ient.Localization = "<Dictionary_Name>"

To have a translated Alarm AuditTrail with Custom Messages and Comments in Reports, the addition of a callback function in Script > Classes > ClientMa
in is required. This function is called every time the DataGrid object is modified.

The Callback function syntax is as follows:

public void OnReport Cust onTabl eCel | (string reportNane, string col utmNanme, System Data.
Dat aRow row, System W ndows. Docunents. Tabl eCel | tableCell)

{
/1 Insert Code Here

}

The code added to the callback function is presented below:

public void OnReport CustonTabl eCel | (string reportNane, string col umNanme, System Data.DataRow row, System
W ndows. Docunent s. Tabl eCel | tabl eCel I)

{

if (rowf"ItenNane"].ToString() == "{object}")

{

string[] Message_Split_Parts = row columNane].ToString().Split('{', '}'); string Translated_Message = "";
for (int i =0; i <= Message_Split_Parts.Length - 1; i++) {

/1 Translate the custom nessage part
Transl at ed_Message += @ ient. Local e(Message_Split_Parts[i]);

Run cellText = (tableCell.Blocks.FirstBlock as Paragraph).Inlines.Firstinline as Run;

/1 Replace the original nessage with the translated one. cell Text. Text = Transl at ed_Message;

}

}
}

The Datagrid language will depend on the dictionary that was enabled when the report was saved.

	Audit Trail

