Audit Tralil

An audit trail (also called audit log) is a security-relevant chronological record, set of records, and/or destination and source of records that provide
documentary evidence of the sequence of activities that have affected at any time a specific operation, procedure, or event.

Settings
To use the Audit Trail function, you must enable it. Go to Edit > Alarms > Groups, and click on the Settings button.
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A popup display will open with many checkboxes. Besides the Enable option, you can choose which actions will be stored in the Audit Trail database. The
options are as follows:

User Logon/Logoff : Stores informational data on user login/logout.

Active Time ¥ | UserName Message =
L 2/4/2020 2:13:07 PM  User Logged user: User; 127.0.0.1\RichClient

2/4/2020 2:13:01 PM Guest Logged user: Guest; 127.0.0.1\RichClient
B 2/4/2020 2:12:57 PM  Administrator Logged user: Administrator; 127.0.0.1\RichClient
: 2/4/2020 2:12:38 PM Guest Logged user: Guest; 127.0.0.1\RichClient

Open/Close Displays: Stores informational data when displays are open or closed.

Active Time ¥ | Group Message =
L 2/4/2020 2:19:27 PM  AuditTrail Display was closed: About; RichClient
_ 2/4/2020 2:19:25 PM  AuditTrail Display was closed: SelectPage; RichClient
__2/4/2020 2:119:25 PM  AuditTrail Display was opened: About; RichClient
3 2/4/2020 2219:25 PM  AuditTrail Display was closed: MainPage; RichClient
_ 2/4/2020 2:19:23 PM AuditTrail Display was opened: SelectPage; RichClient
) 2/4/2020 2:16:49 PM  AuditTrail Display was opened: Header; RichClient
2/4/2020 2:16:49 PM  AuditTrail Display was opened: MainPzage; RichClient

Remote Connections: Stores information on remote client connections (Smart/Rich Clients).

Active Time | Message
__ 2/4/2020 3:26:26 PM Connection accepted: 192.168.0.16\RichClient; Guest
A 2/4£2020 3:25:48 PM Connection closed: 192.168.0.16\SmartClient
2/4£2020 3:25:36 PM Ceonnection accepted: 192.168.0.16\SmartClient; Guest

Custom Messages: Stores added custom messages.



public void MouselLeftButtonDownl (object sender, System.Windows.Input.InputEventArgs e)
1
@Alarm.AuditTrail .AddCustomMessage ("Custom Message added in " + @Server Now + " by User: " + @Client.UserNa.me);I
1

Active Time ¥ | Message | [=

__ 2/4/2020 2:24:38 PM | Custom Message added in 2/4/2020 2:24:38 PM -03:00 by User: Administrator
2/4/2020 2:23:48 PM Custom Message added in 2/4/2020 2:23:48 PM -03:00 by User: Guest

Tag Changes: Stores informational data of every tag change.

Active Time ~ | TagName | Message =
: 2/4/2020 313119 PM  Tag.Pressure Tag changed

2/4/2020 3:13:17 PM  Tag.OnOff Tag changed
_ 2/4/2020 3:13:14 PM  Tag.OpenClose Tag changed

_ 2/4/2020 3:13112 PM  Tag.Selectedindex Tag changed
__ 2/4/2020 313110 PM  Tag.Temperature Tag changed
2/4/2020 3:13:08 PM  Tag.Temperature Tag changed

Datasets (Insert/Updates or All Commands): Stores information on datasets.

Active Time * | Message -

: 2/4/2020 3:06:23 PM Dataset executed Execute command: Dataset.Query.AlarmSelect; Select * from Alarms; Success; RichClient
2/4/2020 3:08:13 PM Dataset executed Execute command: Dataset.Query.HistonianSelect; Select * from Table1; Success; RichClient

Operator Actions: Stores information on operator actions.

Active Time v | Message ||i|

__ 2/4/2020 2:59:52 PM Report executed Save command: Report.TemperatureReport; RichClient; C:\TemperatureReport.pdf
2/4/2020 2:59:30 PM Report executed Save command: Report.FurnacelnfoReport; RichClient; C\FurnacelnfoReport.pdf

Save Reports: Stores information when the save command is executed.

Active Time ~ | Message |3

_ 2/4/2020 2:5%:52 PM Report executed Save command: Report.TemperatureReport: RichClient: C:\TemperatureReport.pdf
2/4/2020 2:59:30 PM Report executed Save command: Report.FurnacelnfoReport; RichClient; C:\FurnacelnfoReport.pdf

System Warnings: Stores information related to the system.

Active Time ~ | Group Message _‘
: 2/4/2020 2:39:19 PM AuditTrail DataSet was started
_ 2/472020 2:38:15 PM AuditTrail Server was started
_ 2/4/2020 2:39:15 PM AuditTrail Historian was started
) 2/4/2020 2:39:15 PM AuditTrail Alarm was started




It is possible to enable any of these options during runtime by using the Alarm namespace properties. The syntax is:

@\ armAuditTrail.<Audit Trail Option>

To visualize the stored Audit Trail data, you can add an AlarmWindow element to your display and select the AuditTrail option in the ComboBox list.
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Custom Messages

One of the most important features of the Audit trail is the ability to have customizable messages added to a historian database. Custom messages are
added in runtime using the method below:

@\ arm Audi t Trai | . AddCust omVessage(string nessage, string areaName, string objectNane, string value, string
itemName, string auxVal ue, string conment)

where:
® message: The custom message to be added to the Audit
® areaName: The area related to this custom message
® objectName: The object related to this custom message
® value: The object value related to this custom message
® itemName: The item name
® auxValue: The auxiliary value
® comments: The comments

The messages can either be text or a concatenation between text and real time info from the project. For messages that are only text, you will need only
the message parameter, e.g.:

@\ arm Audi t Trai | . AddCust omvessage(" The day is sunny")

An example on the usage of text and project info is:



@\ arm Audi t Trai | . AddCust omvessage("User: " + @ient.UserNane + " |ogged");

Add Translation to Custom Messages

To translate text into different languages, you first need to create a set of words in a custom dictionary. Go to Run > Dictionaries > Localization. On the
top of the display, you will find some buttons:

Global Localization Settings
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Dictionary: Dictiona

New: Create a new dictionary

Del: Delete an existing dictionary

Rename: Renames an existing dictionary

Load strings: Load project strings that have the Global Localization setting
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To apply this feature to the custom messages in the Audit Trail, you must follow a certain syntax.

® If the message is text only, the default syntax is:

@\ arm Audi t Trai | . AddCust omvessage("tag changed val ue, AckRequired");

® |f the message is text and project info, you must add the curly brackets char "{ }" before and after the project info. The message string should look
like this:



string nessage = "User: {" + @lient.UserName + "} | ogged"

@ Note

The alarm database will contain chars " { "and " } " in the Message column. The dictionary must also contain the brackets characters.

You must add another string element to the itemName input parameter, as seen below:

string itemName = "{object}"

A final AddCustomMessage with localization capabilities should look like this:

@\ arm Audi t Trai | . AddCust omVessage("User: {" + @ient.UserNamre + "} logged", null, null, null,
"{object}", null, null);

Translating Tags and Tables
For reports with different translation options, the first requirement is the creation of Dictionaries (in Run > Dictionaries > Localization).
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To switch between languages, use the property:



@ ient.Localization ="" // for default dictionary
/1 or
@ ient.Localization = "<Dictionary_Name>"

To have a translated Alarm AuditTrail with Custom Messages and Comments in Reports, the addition of a callback function in Script > Classes > ClientMa
in is required. This function is called every time the DataGrid object is modified.

The Callback function syntax is as follows:

public void OnReport Cust onTabl eCel | (string reportNane, string col utmNanme, System Data.
Dat aRow row, System W ndows. Docunents. Tabl eCel | tableCell)

{
/1 Insert Code Here

}

The code added to the callback function is presented below:

public void OnReport CustonTabl eCel | (string reportNane, string col umNanme, System Data.DataRow row, System
W ndows. Docunent s. Tabl eCel | tabl eCel I)

{

if (rowf"ItenNane"].ToString() == "{object}")

{

string[] Message_Split_Parts = row columNane].ToString().Split('{', '}'); string Translated_Message = "";
for (int i =0; i <= Message_Split_Parts.Length - 1; i++) {

/1 Translate the custom nessage part
Transl at ed_Message += @ ient. Local e(Message_Split_Parts[i]);

Run cellText = (tableCell.Blocks.FirstBlock as Paragraph).Inlines.Firstinline as Run;

/1 Replace the original nessage with the translated one. cell Text. Text = Transl at ed_Message;

}

}
}

The Datagrid language will depend on the dictionary that was enabled when the report was saved.
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