
1.
2.
3.

Sparklines in DataGrids

Overview

A sparkline is a very small line chart, typically drawn without axes or coordinates. In a simple and highly condensed way, sparklines represent the general
shape of a variation, typically over time, in a desired measurement, such as the temperature or the stock market price.

Sparklines are small enough to be embedded in text, or several sparklines can be combined together as elements of a small group.

Typical charts are designed to show as much data as possible and are set off from the flow of text. In contrast, sparklines are intended to be succinct,
memorable, and located directly in the text.

Requirements and Procedures

Below you will find the steps to implement a Sparkline in your project.

Create a database for the numeric information that will be displayed.
Configure the tables and queries that will be used in the data grid.
Configure the Draw Environment and implement the necessary code on CodeBehind.

Database

In you need to include the external database by using one of the providers available in the list. In this example, we Edit>Datasets>DBs, Available Providers
are going to use a SQLite provider in a database called .Nwind

This example database has many tables. However, not all of the tables will be used in the project. The image below shows all the available tables and
highlights the ones that will be used.

Tables and Queries

In you can create internal tables and queries for internal usage.Edit>Dataset>Tables/Queries,

The tables must be mapped to tables that already exist in the database, as explained in the previous section. Each query is defined for a specific database
and may contain a predefined SQL Statement.

Project Configuration

After setting up the tables and queries that you will use, you need to configure one of the tables as the in the configuration DataSource DataGridWindow
(1).

To manipulate a DataGrid control in CodeBehind, the best approach is to use the field (2) for the configuration dialog.Control Name

Then, you can use that given name (2) to get control of the element and change its properties. The below is an example.

TDataGridWindow grid = CurrentDisplay.GetDataGrid("Employees");
grid.GridControl.SetColumnSparkline("Orders", this.SparklineCollectionDelegate, style);
// SetColumnSparkline parameters - fieldName (string)
// - populateCallback (SparklineCollectionDelegate)
// - style (string)

A delegate is an object which refers to a method or you can consider it as a variable that holds a reference to a method. It provides a way to know which
method is called when an event is triggered.

Below is a callback. The system will always look for a code EXACTLY like this one to create the Sparkline. So if you want to use this feature, you MUST
have this code on your code behind.

Dictionary<int, ArgumentValue[]> mapEmployeeToOrders = null;
private ArgumentValue[] SparklineCollectionDelegate(string fieldName, System.Data.DataRow row)
{
ArgumentValue[] sourceCollection;
int emplID = TK.To< int>(row["EmployeeID"]);
if (!this.mapEmployeeToOrders.TryGetValue(emplID, out sourceCollection))
 sourceCollection = new ArgumentValue[0];
return sourceCollection;
}

A sparkline is updated following the logic seen in the sample code below:

A delegate will only call a method that agrees with its signature and return type. A method can be either a static method associated with a class,
or it can be an instance method associated with an object.

// Get data from tables // DataTable employees = @Dataset.Table.Employees.SelectCommand();
DataTable orders = @Dataset t.Table.Orders.SelectCommand();
DataTable invoices = @Dataset.Query.Invoices.SelectCommand();
// //

this.SetSparkline(style); // Set Style to Sparkline this.mapEmployeeToOrders = new Dictionary<int, ArgumentValue
[]>();
foreach (DataRow empl in employees.Rows)
{
int emplID = TK.To<int>(empl["EmployeeID"]);
ist<ArgumentValue> sourceCollection = new List<ArgumentValue>();
foreach (DataRow order in orders.Select("EmployeeID = " + emplID))
{
int orderID = TK.To< int>(order["OrderID"]); ArgumentValue av = new ArgumentValue();
av.Argument = order["OrderDate"]; // x-axis for sparkline
foreach (DataRow invoice in invoices.Select("OrderID = " + orderID))
{
double value = TK.To< double >(av.Value);
double quantity = TK.To< double >(invoice["Quantity"]);
double unitPrice = TK.To< double >(invoice["UnitPrice"]);
av.Value = value + (quantity * unitPrice); // y-axis for sparkline
}
sourceCollection.Add(av);
}
// map values (y-axis) and order date (x-axis) to employee ID this.mapEmployeeToOrders[emplID] =
sourceCollection.ToArray();
}

The available Sparkline styles are:

Line

Area

Bar

WinLoss

Values are represented by bars that either grow up or grow down from an invisible line.

	Sparklines in DataGrids

