
Tags, Assets, and Templates

What are Tags and Templates?

Tags

FactoryStudio uses the term "tag" to refer to real-time variables and their 
associated historical data. Tags usually map to devices, such as PLC 
registers or other physical equipment in the production process. A tag 
can also be connected to entries in SQL  databases, external data 
sources, or an internally calculated value.

All tags have a specific type, such as an integer, text, or date and time. 
FactoryStudio provides over a dozen predefined types and allows users 
to define new types. In addition, some tags may be defined as arrays, 
and some tags may have optional parameters.

Tags are the process variables for your application. Use tags and their 
properties to set up the data model for your process.

Templates

Although FactoryStudio provides many predefined types, you may need 
to define your own type. Templates are used to do this. Templates may 
be defined with properties similar to those of predefined types. Each 
template represents a user-defined type that can be used in the same 
manner as predefined types.

Using templates, you can add to the types of tags available for your 
project by creating new types to fit your application needs. This could be 
as machine data, equipment status, vessels, or as the representation of 
any asset attributes in your plant. 

Built-in Tag Types

FactoryStudio provides 13 built-in tag types, most of which are based directly on .NET datatypes. The 13 built-in tag types are summarized in the 
following table. 

Tag 
Type

.Net Type Value Range

Digit
al

System.Int32 0 through 1

Integ
er

System.Int32 -2,147,483,648 through 2,147,483,647

Long System.Int64 -2,147,483,648 through 2,147,483,647

Dou
ble

System.
Double

-1.79769313486231570E+308 through -4.94065645841246544E-324 for negative values; 4.94065645841246544E-324 
through 1.79769313486231570E+308 for positive values

Deci
mal

System.
Decimal

0 through +/-79,228,162,514,264,337,593,543,950,335 with no decimal point; 0 through +/-
7.9228162514264337593543950335 with 28 places to the right of the decimal; smallest nonzero number is +/-0.000

Text System.
String

0 to approximately 2 billion Unicode characters

Timer System.Int32 Same range as Integer, but with built-in parameters to produce a repetitive wave pattern (see notes below)

Date
Time

System.
DateTimeOff
set

from 12:00:00 midnight, January 1, 0001 to 11:59:59 P.M., December 31, 9999

Time
Span

TimeSpan Data Interval in Days, Hours, Minutes, Seconds and Milliseconds, where each of those properties can hold a Double value

Guid Guid Standard Microsoft Globally Unique Identifier (GUID)

Data
Table

System.Data.
DataTable

Holds an in-memory DataTable



Image System.Byte
[]

Can hold an Image file or any binary content. The Long value is the maximum size of the content. 

Decimal

The Decimal type allows calculation with higher precision than the Double type. However, math operations using Decimal can be 40 times slower than 
using Double. So the Decimal type should only be used when Double precision is not enough.

Timer

Timer is a built-in integer type that can be used to generate precise timing signals. Timers have the following varieties: 

SquareWave:   The value toggles between 0 and 1.
Pulse: The tag changes to 0. Then immediately changes to 1. 

DelayOff: The tag behaves as a PLC Timer Off. If you set the tag with a value other than the StartValue during runtime, the tag will hold that 
value for the period specified in the Interval. The tag goes back to its StartValue after the period of time (Interval). 

Comparer: The tag is set to 1 after the specified comparer Interval, and then goes back to zero at midnight. 

For SquareWave, Pulse, and Comparer, the tag toggles between 0 and the StartValue (instead of 0 and 1) if you set the tag StartValue.

Reference

Reference tags allow dynamic addressing of variables. 

The way you use Reference tags in FactoryStudio is closer to how you use references in .NET programming than it is to the old C++ pointers. Referen
ce tags are similar to .NET references because they both have a type. When you create a reference tag, you need to define the type of object the 
reference will point to. Unlike C++ pointers, a Reference tag cannot be defined to point to invalid memory areas that would cause errors in the 
application.

The target type for the Reference types is defined in the Parameters columns.

Typed references bring advantages in both the engineering stage and in runtime. In the engineering stage, it allows IntelliSense to directly browse the 
template members if a reference is pointing to a template. In runtime, it allows string data validation. 

All Reference tags have an additional runtime attribute. This is the  and it specifies which tag that the reference will be linked to during execution.link, 

Essentially, the link property is a string property that needs to receive the target tag name before using the reference tag. You can assign a string 
directly or by using a string expression. The best way to set the link property is to use the method GetName(), which will create the string based on the 
current tag name. This way, you can rename the tag without having to search the strings. This also shows the tag names linked on the cross-
reference utility. 

An example project (ReferenceTags) ships with FactoryStudio.



The reason for using the GetName() method, instead of using strings directly, is that with GetName() you retain the benefits of Cross-Reference and 
Refactoring. 

Creating and Editing Tags

To create and edit tags:

Go to  .Edit > Tags > Objects
To create a new tag, enter its name and any other applicable properties in the blank top row (Insertion Row). To edit an existing row, select 
any item in the row and make any desired changes. Here is a complete table of available tag properties. Note that many of these properties 
are optional and only apply to specific kinds of tags.

Colu
mn

Description

Name Enter a name for the tag. The system lets you know if the name is not valid.

If you edit the name of an existing tag, the system automatically updates the name throughout the project.

Type Select the tag type, which may be a built-in type or a user-defined template.

Para
mete
rs

Configure any parameters. The parameters vary based on the tag type. Once the type is entered, you can double click on the parameters 
field to see a dropdown menu with any applicable parameters.

DeadBand — It is used as a limitation to save new values to the tag. It defines the difference necessary between the old value and the 
new value. Also is possible to set the DeadBand as an percentage and with decimal numbers as: 10.5; 10%; 300%; 17.8%.

      Example 1: If the DeadBand is Set to 5 and initial value of the tag is 0, the next input possible to be saved, need to be >=5 or <=-5.

      Example 2: If the current value of the tag is 100 and the deadband is set to 10%, the next input possible to be saved, need to be >=110 
or <=90.

Array When this field is blank, the tag is not an array.

When the field contains an integer value of N, an Array is created from position 0 to N.

For example, if the field contains the value 5, the Array is created from Tag[0] to Tag[5]. This means that 6 elements are created.

Two programming styles are accommodated by this method; one that counts elements from 0 to less than five, and one that counts from 1 
to 5.

The columns above are visible by default. To add or remove one of the column below, right-click the column heading area and check or uncheck the 
columns that should be visible.

Column Description

Units Enter the engineering units of measure that you want to use as a label for this tag.

StartVal
ue

Enter a starting value for this tag. This is the value the tag will be initialized with when FactoryStudio starts.

Format Enter a default format for displaying the data. For example:

N0—Number with no decimal places.
N3—Number with three decimal places.
X—Hexadecimal (supported only for integral types).
C—Currency.
When configuring output in the Displays, the format for each output field can be individually defined, but in most scenarios it is 
easier to attach the default formatting to the tag itself.

Examples:
@Tag.Reference1.Link = @Tag.TagName.GetName() (VB) 
@Tag.Reference1.Link = @Tag.TagName.GetName(); (C#)
@Tag.Reference1.Link = "Tag.TagName"; (C#)
@Tag.Reference1.Link = "Tag.TagNa" + "me"; (C#) 



Retenti
ve

Select the option to save the value of the tag and its internal properties to the database every time the value changes. This retains the 
value when the application shuts down and makes the value available when the application next starts.

None—Does not retain the value or properties.
ValueOnly—Retains only the value.
Properties—Retains all properties, including the value.
PropertiesOnly—Retains all properties, except the value.

Min Enter the minimum value that is valid for the object.

Max Enter the maximum value that is valid for the object.

Visibility Select the value visibility on the OPC server for remote projects:

Private—Tag is visible only to the local project and redundant pair.
Protected—Read-only tag that is visible on the OPC server to remote projects and OPC clients.
Public—Tag is visible on the OPC server to remote projects and OPC clients.

Domain Tag value for the entire project or value specific to each client display.

Server Tag value is consistent across the entire project and all remote client displays.—
Most tags in a project should be Server tags.
Client Tag value is local to each remote computer running a client display (web or visualizer displays).—
Use Local tags to denote temporary data specific to individual client computers. The most common use of Local tags is when 
temporary data is needed to manage the user interface on the displays.
Local tags allow different values on each client computer.

Comme
nt

Enter any comments about this tag.

ReadSe
curity

Select which groups have the right to read the Tag. Tag Security protection can be configured in Display > Client Settings

ScaleMin Enter the scale min value for communication.

ScaleM
ax

Enter the scale max value for communication.

Device
Point

Read-only. Show which communication point is related to the tag (if related)

WriteSe
curity

Select which groups have the ability to write in the Tag. Tag Security protection can be configured in Display > Client Settings

[Other 
column
s]

For definitions of other columns that are available in this table, see .Common Column Definitions

Continue adding as many tags as you need. 

Notes

You can create a tag from anywhere in FactoryStudio by clicking   in the toolbar.New Tag

Like any other configuration table, you can import CSV files or copy/paste content directly from an Excel spreadsheet or from other applications. 

With FactoryStudio, you can replace names at any time. An easy way to create a tag is to click on the Name column of the insertion row, then press 
space and enter. Each time you do this, the system will create the same type of tag that was last created. In the insertion row, select the Type, then 
click on the header or any other part of that grid. This will create a tag with a default name. Also, you can configure more than one row at a time by 
selecting the rows with the Shift button, then right-click and select "Edit Combined Rows". A new popup will open with the information for the rows. 
The settings changed in this window will change all of the selected rows. If a column has  , it shows that this column has more than one 
configuration. 

Tag Formats

The format property defines the display format of tag values. These formats follow the specifications provided in Microsoft .NET. For valid numeric 
formats, refer to  For example: N1 (number with 1 decimal place)..Standard Numeric Format Strings

For valid date and time formats, refer to  For example: d (short date)..Standard Date and Time Format Strings

For a more in-depth discussion of format strings, refer to .Formatting Types

https://docs.tatsoft.com/display/DOC91/Working+with+Datagrids#WorkingwithDatagrids-CommonColumnDefinitions
http://msdn.microsoft.com/en-us/library/dwhawy9k%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/az4se3k1%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/fbxft59x%28v=VS.90%29.aspx


Numeric format examples

Specifier Description

N0 Number with no decimal places

N3 Number with 3 decimal places

X Hexadecimal (supported only for integral types)

C Currency

Date/time format examples

Specifier Description

T (only) Long time pattern (equivalent to HH:mm:ss).

d (only) Short date pattern (equivalent to M/d/yyyy (month/day/year) for en-us).

dd Show the day of the month as a number from 01 through 31.

ddd Show the abbreviated name of the day of the week.

dddd Show the full name of the day of the week.

MM Show the month as a number from 01 through 12.

MMM Show the abbreviated name of the month.

yy Show the year as a two-digit number.

yyyy Show the year as a four-digit number.

hh Show the hour as a number from 01 through 12.

HH Show the hour as a number from 00 through 23.

mm Show the minute as a number from 00 through 59.

ss Show the second as a number from 00 through 59.

fff Show the millisecond as a number from 000 through 999.

tt Show the A.M./P.M. designator.

Creating Templates

Templates let you create new tag types based on existing built-in types.

To create a tag template:

Go to Edit > Tags > Templates.
Click  .New
The "Create New Tag Template" dialog shows.
In the "New Type Name" field, enter a name for the tag type. In the Description, enter a description of the tag. Click  . The Templates tab OK
displays with the name of the new template at the top of the tab.
Click the insertion row to create a new attribute for this tag template.
Enter or select information, as needed. The properties are the same ones for Tags. See Creating and Editing Tags above.
To delete a template, select it from the User Custom Type drop-down list, then click  .Del
On the   tab, you can now use this new template in the Type column.Objects

Assets and Categories

Assets



Assets let you configure additional metadata for your project when you have the Enterprise version of FactoryStudio. For example, you can organize 
the objects in your project into a hierarchy. This lets you group tags that are related to each other. The hierarchy may reflect such things as the area of 
your manufacturing floor or the location of your machinery.

To create assets:

Go to  .Edit > Tags > Assets
Right-click "Elements" and select  .New Level
Enter a name for the level.
Right-click the new level and select  .Insert Asset
The Select Object window displays, with all the objects organized by type on the left side.
Select the object type on the left side and the object you want on the right side.
Click  .OK
The object becomes a child of the selected level.
Continue adding child or sibling levels and inserting assets, as needed.
Right-click to rename or delete a level, or right-click an asset to delete it.
In the   tab, select the new level in the Level column.Objects

Categories

If you have the Enterprise version of FactoryStudio, you can create user-defined categories of data that you can use as tag metadata. Categories are 
useful for filtering, both when creating the project and during runtime.

To create categories:

Go to  .Run > Dictionaries > Categories
Enter or edit the name and description of the category.
Continue adding as many categories as you need.
On the   tab, select the new category in the Category column. Other project elements can use categories for project Tag > Objects
organization.

The Tag Namespace

All project tags are available in the runtime modules as .NET objects for the Tag Namespace. 

All of the built-in tag types share a common set of properties and methods which are defined in the base class  . The tags created from user TagObj
defined templates are implemented by the base class  . UserType

Class Type Description.

TagObj Base classes to all Tag objects.

Digital Runtime properties for tags of Type Digital.

Analog Runtime properties for all Analog Tag Types.

AnalogInt Runtime properties for tags of Type Integer.

AnalogLong Runtime properties for tags of Type Long.

AnalogDecimal Runtime properties for tags of Type Decimal.

AnalogDouble Runtime properties for tags of Type Double.

Text Runtime properties for tags of Type Text.

TDateTime Runtime properties for tags of Type DateTime.

Timer Runtime properties for tags of Type Timer.

TTimeSpan Runtime properties for tags of Type TimeSpan.

Reference Runtime properties for tags of Type Reference.

TDataTable Runtime properties for tags of Type DataTable.

UserType Runtime properties for tags from Templates.

See  for the complete programming reference on runtime objects.Namespaces

https://docs.tatsoft.com/display/DOC91/Namespaces

	Tags, Assets, and Templates



